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Notice also the considerable difference between the 
shape of the cll-vs-T curve at constant pressure and at 
constant volume. 

Equation (6) would seem to predict that 1/{3T could 
become negative near the lambda point (where C ~ 00) . 
However, the crystal becomes unstable as 1/{3T---70 and 
should undergo a first-order transition. Details of this 
kind of behavior are given in Paper I, where instability 
and hysteresis are predicted for an Ising model. Our 
data indicate that 1j {3s does not vanish at any tem­
perature, but precise work is very difficult in the critical 
region due to the extremely high attenuation. In any 
case, the lack of very accurate thermal expansion and 
specific heat data in the immediate region of the critical 
point makes it impossible to calculate 1/ {3T from 1/ {3s. 
Therefore, we do not know whether 1/ {3T vanishes or 
not. However, the shear constants (especially C44) are 
sensitive functions of the molar volume and can be 
viewed as probes to study the behavior of the volume 
near the lambda point. Since there is no excess attenu­
ation associated with the shear waves, it is possible to 
follow their behavior throughout the entire transition 
region both on warming and cooling the sample. 

Both C44 and C' show a definite hysteresis of 0.9°± 
0.2°K at 1 atm, and for C44 this has been followed as a 
function of pressure (see the inset on Fig. 1). In addi­
tion' our shear data strongly suggest a sluggish first­
order transition in the critical region. For points taken 
at temperatures more than 10 K away from Tx and at 
pressures more than 100 bar away from PA, equilibrium 
was achieved within about 15 min after the temperature 
or pressure was adjusted. In the immediate vicinity of 
a critical point, very slow changes in velocity were 
still observed 45 min after the temperature or pressure 
was adjusted, as would be expected in a metastable 
region. Also the changes in C44 and C' in this narrow 
hysteresis region are extremely abrupt, even when com­
pared with the very rapid variations observed in the 
ordered phase near the transition line. (See Figs. 5 
and 6.) The presence of hysteresis and the very abrupt 
changes in velocities near T'A are perhaps the most 
significant features of our shear data at 1 atm. 

This same sort of behavior has also been observed 
in the temperature dependence of the volume of pow­
dered samples of NH4Cl. Dinichert25 carried out a very 
careful x-ray measurement of the unit cell dimensions 
in the critical region, while Thomas and Staveley26 

measured the volume directly. In both cases, a hyster­
esis loop was observed with a temperature width of 
about 0.4°K. At the transition temperature, on cooling 
and warming, a very sharp volume change of t. V / V = 
4.7XlO-3 was observed. Both these authors proposed 
theories for this hysteresis, which are not discussed here 
except to point out that both theories treat the transi­
tion as first order. 

26 P. Dinichert, Helv. Phys. Acta 15, 462 (1942). 
26 D. G. Thomas and L. A. K. Staveley. J. Chern. Soc. 1951, 

1420. 

The discussion given in Paper I shows how the usual 
ideas of order-disorder transitions based on Ising models 
can be reconciled with the notion of a first-order transi­
tion and hysteresis. The qualitative behavior of am­
monium chloride is in excellent agreement with the 
predictions of Paper I, and we shall attempt a more 
quantitative comparison by making an approximate 
calculation of the hysteresis predicted for a three-dimen­
sional Ising model. Let us begin in terms of the two­
dimensional case and refer to Fig. 1 of Paper 1. On the 
Ising isotherm T6 we have marked the point D where 
the tangent is parallel to the disordered-lattice isotherm; 
on the disordered-lattice isotherm T6 we have marked 
the point C such that the line DC is parallel to the 
area axis . We notice that to a rough approximation 
(valid for a small range of temperatures near the critical 
point) the Ising isotherms are related to each other by 
a translation parallel to the u axis. The same is valid 
in a more general sense for the disordered-lattice iso­
therms. In this approximation, all points on the spin 
isotherms where the tangent is equal to the slope of 
the disordered-lattice isotherm are on a straight line 
parallel to the u axis. If To is the temperature of the 
upper mechanical instability point, and T3 is that of 
the lower one, then t.T= T.- T3 can be determined from 
the condition UD- (dO'D/ dT) t.T= 0'3' = O'c-O'ccxdzt.T. 
This gives 

t.0" = [O'CCXdZ- (dO'D/ dT) Jt.T, 

where t.0" is defined as O'C-O'D. But dO'Dj dT"-'dO'r,jdT 
and O'c will be numerically quite close to 0'5, therefore 

(10) 

We define also t.u = U6' - u.; thus t.u / 0'5 is the relative 
area expansion of the crystal when the first-order tran­
sition takes place on warming. For a three-dimensional 
crystal, Eq. (10) becomes 

t.v' / [ 1 ( dV ) ] 
t1T"-'-;; cxdZ-;' dT 'A ' 

(11) 

and the relative volume change associated with the 
first-order transition is denoted by t.v/ Vx. 

Now we wish to calculate t.T and t.v/ vx for ammo­
nium chloride. We know (1 / vx) (dv/ dT)x experimen­
tally. The value for CXdZ in the critical region can be 
extrapolated from the temperature dependence of the 
thermal expansion in the disordered phase far away 
from the lambda point. To evaluate t.v'/ vx and t.v/ vx 
we use Fisher's theoretical expressions for the specific 
heat "per site" for a simple-cubic lattice,27 which are 
based on an assumed logarithmic singularity at the 
critical point. Integrating his expressions above and 
below the critical temperature with respect to H= J / kT 
we obtain the internal energy "per site" as a function 
of H. From Eq. (6) of Paper I we get equations for PI 

27 M. E. Fisher, Phys. Rev. 136, A1599 (1964). 
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around the critical point. Using the known variation 
of T,. (and thus J) with v, one can plot on a p-V 
diagram the Ising isotherm at 24l.SoK and the dis­
ordered-lattice isotherm based on the extrapolated 
value at 24l.soK of the isothermal compressibility 
fld? (We used fld?= S.9X 10-12 cm2 dyn-l.) From this 
plot we determined AV/ VA=0.78XlO-3 and Av'I VA= 
1.1SXlO-4. Substituting this latter value into Eq . . (11) 
and letting (1 / VA)(dvldTh=-4.17XlO-4 deg-1 and 
adZ= l.l1X 10-4 deg-r, we find a hysteresis AT of 0.22°K. 

The predicted value of Avl VA (0. 78X 10- 3) is smaller 
than the experimental value of 4.7Xl0- a. This could 
mean that the singularity at the critical temperature 
is stronger than a logarithmic singularity, which is 
certainly possible because a logarithmic singularity is 
the weakest type. However, we must remember that 
Fisher's expressions are not exact and Eq. (11) in­
volves several approximations; thus we should not ex­
pect better than order-of-magnitude agreement. Since 
the predicted value of Avl VA is too small, Av'l v,. and 
AT should also be too small. If we use the experimental 

AvlVA value as a guide for correcting our prediction of 
AT, a new predicted value of l.3°K would be obtained. 
Thus the theoretical maximum value of the temper­
ature hysteresis should lie in the range 0.2° to l.3°K, 
in reasonable agreement with the observed values which 
range between 0.4° and 0.9°K. Although this compari­
son between theory and experiment is difficult and 
approximate, it strongly supports the validity of the 
Ising model defined in Paper I as a description of the 
ordering process in ammonium chloride. 

In summary, we have shown that there is agreement 
over a wide range of temperatures between the con­
stant-volume elastic constants of ~Cl single crystals 
and the predicted elastic behavior of a compressible 
Ising model and in addition that the predicted in­
stability and hysteresis at temperatures very close to 
the lambda point does occur. Ammonium chloride is a 
favorable case for observing such effects. It is interest­
ing to speculate that the same effects may be present 
on a much smaller scale near order-disorder points in 
other, less compressible crystals. 
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